K-Nearest Neighbor Algorithm to Identify Cucumber Maturity with Extraction of One-Order Statistical Features and Gray-Level Co-Occurrence
نویسندگان
چکیده
Determination of the maturity cucumber fruit after harvest is subjective. The level thoroughness each individual's selection different. cucumbers seen from age fruit, resemblance ripe or old, raw young difficult to distinguish in terms texture skin. use red, green, blue, and grayscale color modes imagery, then processed using extraction statistical features Order-One Order-Two GLCM methods. Imagery a 13 megapixels smartphone camera. Texture parameter values are used first order: mean, variance, skewness, kurtosis, entropy. Second energy, contrast, correlation, inverse different moments, angular second variance 2, entropy 2. classification parameters both order uses an algorithm K-Nearest Neighbors as comparison test data training data. So that system made can identify old young. highest accuracy found imagery with combination two skewness kurtosis euclidean distance calculation Neighbor 96.05%.
منابع مشابه
Drought Monitoring and Prediction using K-Nearest Neighbor Algorithm
Drought is a climate phenomenon which might occur in any climate condition and all regions on the earth. Effective drought management depends on the application of appropriate drought indices. Drought indices are variables which are used to detect and characterize drought conditions. In this study, it was tried to predict drought occurrence, based on the standard precipitation index (SPI), usin...
متن کاملGray Level Co-Occurrence Matrices: Generalisation and Some New Features
Grey Level Co-occurrence Matrices (GLCM) are one of the earliest techniques used for image texture analysis. In this paper we defined a new feature called trace extracted from the GLCM and its implications in texture analysis are discussed in the context of Content Based Image Retrieval (CBIR). The theoretical extension of GLCM to n-dimensional gray scale images are also discussed. The results ...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملFast Approximate Nearest-Neighbor Search with k-Nearest Neighbor Graph
We introduce a new nearest neighbor search algorithm. The algorithm builds a nearest neighbor graph in an offline phase and when queried with a new point, performs hill-climbing starting from a randomly sampled node of the graph. We provide theoretical guarantees for the accuracy and the computational complexity and empirically show the effectiveness of this algorithm.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IOP conference series
سال: 2021
ISSN: ['1757-899X', '1757-8981']
DOI: https://doi.org/10.1088/1755-1315/819/1/012010